
Designing An Article
Index Database System
by Bob Swart

As your collection of copies of
The Delphi Magazine grows,

you want to be sure you can find
all those nuggets of information
quickly and easily, just when you
need them, don’t you? A database
of all the articles, reviews, tips
and clinic items is what’s needed
and of course Delphi is the ideal
tool to create such a system!

This article describes the devel-
opment of The Delphi Magazine
Article Index Database (TDMAid).
The full source code is on this
month’s disk, along with the data
files with details from all the back
issues. We’ll be updating both the
software and data regularly and
you will be able to download new
versions from The Delphi Magazine
Web site. In fact, as this issue goes
to press, we’re continuing to add
new features to the software, so
check out
 http://ourworld.compuserve.com/
 homepages/DelphiMagazine
now for the latest version!

Analysis
First of all, we need to define the
information we want to store in the
database. At the least, we need a
table for the article information
and one for the authors. The basic
information that is needed in the
ARTICLE table is:
➣ Article ID (integer key)
➣ Article Type (one of: Article,

Review, Tip, Clinic, Misc)
➣ Title (string of 64 characters)
➣ Author1 ID (integer foreign key)
➣ Author2 ID (integer foreign key)
➣ Author3 ID (integer foreign key)
➣ Issue Number (integer)
➣ Issue Date (month, year) for

display, calculated field from
Issue Number

➣ Page Number of start of article
(integer)

➣ Summary (memo field)
As noted, another table with
author information would be most

informative as well (including a
picture of the author). The infor-
mation that we would like to see in
the AUTHOR table is:
➣ Author ID to link to ARTICLE table

(integer key)
➣ Name (string of 64 characters)
➣ Email address (memo field, gen-

erally with one or two lines of
bio info and e-mail address)

➣ Photograph (graphic blob)
We also decided to create a
separate KEYWORD table:
➣ Article ID (foreign integer key)
➣ Keyword / Key Phrase (string of

28 characters)

Data Design
Now that we’ve defined the three
tables “on paper”, it’s time to build
them. The easiest way to build a
new empty table is to use the
Database Desktop from Delphi 1
(note that the code will work with
both versions of Delphi without
any problems, I’ve used the Delphi
1 tools to make sure every reader
is able to re-create this example as
we proceed. If you have Delphi 2
then you can use the Database
Explorer of course.

Normally, when using Borland
Database Desktop to create tables
for a new project, it would be advis-
able to create an alias first. An alias
is a logical name to specify the lo-
cation of database tables and con-
nection parameters for database
servers. Using an alias, you are not
required to specify the full path for
your database tables, which is
most helpful. Aliases are stored in
your local IDAPI.CFG file, which is
one reason why I’m not using an
alias for this project: everyone
would need to define an alias and I
want the source code for this pro-
ject to compile and run without a
single change.

So, while we could tell the user
to create an alias using the BDE
Configuration Utility BDECFG.EXE,

or create an alias programmati-
cally by calling DbiAddAlias, we
prefer to use no alias at all: our
program just expects the database
tables to be in the same directory
as the executable, so we can call
ExtractFilePath(ParamStr(0)) and
set the result to the DatabaseName
property of our tables and queries.

Of course, for design time, we
should use an alias. For this project
I used an alias called TDMAID, set to
the directory in which I’ve placed
all my tables and source files. If you
want to follow the development of
the TDMAid application here, then
I suggest you do the same.

I’ve chosen to use the Paradox
5.0 for Windows table type, as it’s
somewhat richer than dBASE, has
automatic referential integrity ca-
pabilities and has native BDE sup-
port. To save space, I won’t go
through the details of creating the
tables, as it’s very straightforward.

Note that I defined a picture mask
for the Article Type field in the
ARTICLE table, comprising a set of
five possible values: Article,
Review, Tip, Clinic and Misc. Only
one of these five values (or a NULL
value, since it’s not a required
field) is accepted by the BDE as a
valid value for this field.

To define the referential integ-
rity relationship between the
ARTICLE and AUTHOR tables we close
both tables in the Database
Desktop and change our working
directory to be the directory where
the tables are saved (in case this
wasn’t our current working direc-
tory). Then, we open the ARTICLE
table and choose Restructure
Table. In the Table Properties
combobox we select Referential
Integrity and click the Define but-
ton. In the Referential Integrity
dialog (Figure 1), select the Author
1 field as the field for which we
want to define a referential integ-
rity rule, namely that this field

30 The Delphi Magazine Issue 11

should be connected to the Author
ID field of the AUTHOR table. When we
select the AUTHOR.DB table in the
right listbox, to indicate that this is
the master table for our referential
integrity rule, we automatically get
the key from that table (the Author
ID field) that’s being connected to
the Author 1 field. This will now
ensure that we cannot delete an
Author from the AUTHOR table unless
all his/her articles have been de-
leted in the ARTICLE table as well.
More background theoretical infor-
mation on the use and implications
of referential integrity can be found
in works on relational database
theory, by Codd or Date for exam-
ple, and in the Borland Database

Desktop Help (which will also ex-
plain why we want to use the Strict
Referential Integrity checkbox).

If we click on the OK button on
the dialog we can give this referen-
tial integrity rule a name (use
Author1 in this case). We then need
to do exactly the same for the
Author 2 and Author 3 fields, nam-
ing the rules appropriately. Saving
the ARTICLE table again will update
the ARTICLE.VAL file with the
referential integrity information.

You should now be able to figure
out how to add the referential in-
tegrity rule named Article to the
Article ID field of the KEYWORD table,
connected to the ARTICLE table (to
prevent a user removing an article

unless all keywords connected to
the article are removed). This all
seems pretty obvious, and it may
seem unnecessary (as we’re only
writing a database viewer in this
article), but for the data-entry peo-
ple at The Delphi Magazine offices
it sure makes a lot of difference to
know that it’s the database itself
that holds referential integrity
rules that guard over the integrity
of the data in the tables.

Main Form Design
Now it’s time to let Delphi generate
some nice forms to browse the
data in our tables. By default,
Delphi will start with a new, empty
project, with an empty form staring
at us. Because we’re going to use
the Database Form Expert, we
don’t need this empty form, so
we’d like to remove it from our pro-
ject. To do that, select the View |
Project Manager menu, then close
the empty form Form1 by clicking on
the line with Unit1 and Form1, fol-
lowed by a click on the Remove but-
ton. Delphi will then ask if we would
like to save the changes to
UNIT1.PAS. Just answer No and the
empty form disappears. Close the
Project Manager and we are left
with a truly empty project!

Database Form Expert
We now start the Database Form
Expert to create a new form, by
selecting it from the Help menu. In
Form Options we’ll choose a simple
form. Because we want to add
some search facilities to our appli-
cation, we’ll create a form using
TQuery objects instead of TTable.

In the next page, select the
ARTICLE table, as this will be the
first one we will put on the form,
then on the third page of this dia-
log, we can select the fields for
which we want Delphi to generate
visual data-aware controls on the
form. We don’t want to see every
field. In fact, we’d rather like to hide
the key ID fields from both the AR-
TICLE and AUTHOR tables. On the
fourth page, we’ll pick the default
horizontal field layout. After click-
ing on the Next button one more
time, we agree that this should be
our main form and the initial result
is shown in Figure 2.

➤ Figure 1

➤ Figure 2

July 1996 The Delphi Magazine 31

If we look closely, we can see
some unexpected results. The
fields all seem a little smaller than
we expected, and the Summary field
seems all wrong: isn’t this sup-
posed to be a memo data-entry
field? It indeed is of type TDBEdit
and not of type TDBMemo. Why? I
don’t know, but we’ll replace it with
a genuine TDBMemo, setting its
DataSource property to DataSource1
and DataField to Summary. Shame-
less plug: Marco and Dr. Bob’s
Database Expert (Issue #7, Listing 3,
page 14) would not have assigned
a TDBEdit to a memo field!

Calculated Field
The next thing we need to do is add
the field IssueMonthYear, which is
calculated from the Issue # field.
To add a calculated field, double
click the Query component to start
the Fields Editor, then click on the
Define button to start the Define
Field dialog, in which we can enter
a new calculated field with the Field
name IssueMonthYear (the dialog
itself will make up the Component
name Query1IssueMonthYear) and
select the field type of StringField
with a size of 20 (Figure 3).

Next, we drop a TDBLabel and a
TDBEdit between the Issue # and
Page Number fields on the form,
assign their DataSource to
DataSource1, assign their DataField
to IssueMonthYear (the calculated
field we’ve just defined) and drag
the controls around a bit to give
the form a somewhat more satisfy-
ing look. Since we’re doing this,
let’s work on the naming as well.

Click on the Query1 component and
rename it to QArticle (all the fields
for the query will automatically be
renamed).

To define the value of the
calculated field (which is now
called QArticleIssueMonthYear, we
need to go to the Events page of the
QArticle query component and
write our code in the OnCalcFields
event handler (Listing 1).

The algorithm used to calculate
the field is pretty simple. For the
first four issues, we use a kind of
lookup table: the first issue had a
cover date of April 1995, then
followed July, September and
November for issues 2, 3 and 4.
From Issue 5, which had a cover
date of January 1996, the magazine
has been monthly, so for any issue
number >= 5, we can use:

Month = 1 +
 ((IssueNumber - 5) mod 12)
Year = 1996 +
 ((IssueNumber - 4) div 12)

Authors
Now it’s time for us to add the list
of authors for each article to the
form. We do this by dropping an-
other TQuery (renamed to QAuthor),
a TDataset and a TTabSet (renamed
to TabSetAuthor) on the form. Note

that we won’t need a NoteBook to
come with the TabSet, as we just
use the TTabSet to define which
Author we’re looking for (the first,
second or third author). We con-
nect the DataSet2 component to
QAuthor and prepare the SQL query
as follows:

SELECT * FROM AUTHOR WHERE
 (AUTHOR.’Author ID’ =
 :AUTHOR)

The :AUTHOR part is a parameter in
this SQL query, which we need to
define and fill with a sensible value
of Author ID before executing the
query (Figure 4). We will set this
parameter when one of the three
tabs is clicked and also set the
Active property of QAuthor to True.
See Listing 2.

Now that we can execute the
QAuthor query, we need some data-
aware controls on the form to show
the contents of the data fields. But
first we need to make sure that we
can actually access the individual
fields: double-clicking on the
QAuthor component opens up the
Field Editor, where we can Add all
the fields.

We need a TDBEdit to hold the
name of the author, a TDBMemo to
hold the Author’s bio and email

➤ Figure 3

procedure TForm1.ArticleCalcFields(DataSet: TDataset);
begin
 case QArticleIssue.Value of
 1: QArticleIssueMonthYear.Value := ’April 1995’;
 2: QArticleIssueMonthYear.Value := ’July 1995’;
 3: QArticleIssueMonthYear.Value := ’September 1995’;
 4: QArticleIssueMonthYear.Value := ’November 1995’;
 else
 if QArticleIssue.Value >= 5 then { monthly from now on }
 QArticleIssueMonthYear.Value := Format(’%s %d’,[
 LongMonthNames[((QArticleIssue.Value-5) mod 12)+1],
 1996 + (Pred(QArticleIssue.Value-4) div 12)])
 else
 QArticleIssueMonthYear.Value := ’unknown’
 end
end;

➤ Listing 1

procedure TForm1.TabSetAuthorClick(Sender: TObject);
begin
 QAuthor.Active := False { reset last query };
 case (Sender AS TTabSet).TabIndex of
 0: QAuthor.ParamByName(’AUTHOR’).AsInteger := QArticleAuthor1.Value;
 1: QAuthor.ParamByName(’AUTHOR’).AsInteger := QArticleAuthor2.Value;
 2: QAuthor.ParamByName(’AUTHOR’).AsInteger := QArticleAuthor3.Value
 end;
 QAuthor.Active := True { execute! }
end;

➤ Listing 2

32 The Delphi Magazine Issue 11

address, and a TDBImage to hold the
photo (we don’t need the Author
ID). We can place the three con-
trols on the form just between the
article summary memo control and
the TTabSet. And then of course we
link up the controls to DataSource2
and set the relevant fields.

Finally, since we only want to
browse the data, we can remove the

Insert, Delete, Edit, Post,
Cancel and Refresh buttons from
the Navigator.

Now we’re almost done. At de-
sign time, the form should resem-
ble Figure 5. Actually, this has
some extra things we haven’t ad-
dressed quite yet (apart from the
fact that this is a Win95 screenshot,
to show again that this project will

work with Delphi 1 and 2, and can
run on Windows 3.1x, Windows 95
and NT). We’ve added a right
mouse click TPopupMenu (with an
AboutBox and extra information)
and three extra TSpeedButtons, one
to exit the program and two for
special search options.

Author Tabs
The SpeedButton with the A label is
used to switch between showing
First Author etc and the actual
author names on the TabSet. In the
latter case, a query for each author
is needed to get to the author name
and on a slow machine this may
take too long for comfort.

For completeness, the method
that executes the code to get the
true names (or fixed names) for the
authors and assigns them to the
tabset’s tabs is DBNavigatorClick,
since this is the place where we
move from one record to another.
The first part of this routine is
pretty simple, we assign a fixed
label to the tabset in case an author
is present. We can see if an author
is present if we check to see if the
QArticleAuthor field is greater than
zero (valid Author IDs are from 0
up). See Listing 3.

We could alternatively have
checked each QArticleAuthor field
for a NULL value, but checking on
the actual value helps check for the
validity of the Author Key.

As can be seen in the listing, the
caption of the BtnAuthorName button
decides for us whether we should
use the three fixed labels or the
actual names of the authors.
Getting these actual names is what
the rest of the DBNavigatorClick
method is all about. We set the
Screen.Cursor to an SQL hourglass
and then check for each of the
three authors if the Author ID field
is greater than zero, to indicate
that an author is present. If so, we
set the AUTHOR parameter of the
QAuthor query to the value of the
QArticleAuthor field, set the Active
property of the QAuthor to True to
start the query, get the result, and
set it as the name of the next new
tab in the TabSet. If the query fails,
we go back and use the fixed name
instead (in a try-except block, so
the user doesn’t notice anything).

➤ Figure 4

procedure TForm1.DBNavigatorClick(Sender: TObject; Button: TNavigateBtn);
begin
 TabSetAuthor.Tabs.Clear;
 if BtnAuthorName.Caption = ’1’ then begin
 if QArticleAuthor1.Value > 0 then TabSetAuthor.Tabs.Add(’first author’);
 if QArticleAuthor2.Value > 0 then
 TabSetAuthor.Tabs.Add(’second author’);
 if QArticleAuthor3.Value > 0 then
 TabSetAuthor.Tabs.Add(’third author’)
 end else begin
 { names of authors }
 Screen.Cursor := crSQLWait;
 if QArticleAuthor1.Value > 0 then begin
 QAuthor.Active := False;
 QAuthor.ParamByName(’AUTHOR’).AsInteger := QArticleAuthor1.Value;
 try
 QAuthor.Active := True;
 TabSetAuthor.Tabs.Add(QAuthorName.Value)
 except
 TabSetAuthor.Tabs.Add(’first author’)
 end
 end;
 if QArticleAuthor2.Value > 0 then begin
 QAuthor.Active := False;
 QAuthor.ParamByName(’AUTHOR’).AsInteger := QArticleAuthor2.Value;
 try
 QAuthor.Active := True;
 TabSetAuthor.Tabs.Add(QAuthorName.Value)
 except
 TabSetAuthor.Tabs.Add(’second author’)
 end
 end;
 if QArticleAuthor3.Value > 0 then begin
 QAuthor.Active := False;
 QAuthor.ParamByName(’AUTHOR’).AsInteger := QArticleAuthor3.Value;
 try
 QAuthor.Active := True;
 TabSetAuthor.Tabs.Add(QAuthorName.Value)
 except
 TabSetAuthor.Tabs.Add(’third author’)
 end
 end;
 Screen.Cursor := crDefault
 end;
 if TabSetAuthor.Tabs.Count > 0 then
 TabSetAuthor.TabIndex := 0
end;

➤ Listing 3

July 1996 The Delphi Magazine 33

Finally, if all the authors have
been assigned to a tab, the first tab
is selected by setting the TabIndex
property of the TabSetAuthor to 0.
This will cause the TabSet to actu-
ally collect the information for the
selected author as implemented in
the TabSetAuthorClick method
(Listing 2).

A final thing that might be helpful
when clicking on the DBNavigator is
to somehow have an indication of
which record number we are on
and how many records there
actually are in the resulting query.
The latter can be collected as
QArticle.RecordCount, of course,
but how do we know which record
we are at? It appears that we have
to use some native BDE calls to get
this information and it’s different if
you’re using a dBASE or a Paradox
TDataset. See Listing 4 for the
function CurrentRecordNumber.

Note that in case of an inactive
dataset we call DBError which in
turn will raise an exception that we
catch ourselves, so we can opti-
mise this routine for that particular
instance. We use the value of
CurrentRecordNumber as the first
statement in the DBNavigatorClick:

ToolBar.Caption :=
 Format(’Article %d/%d’,
 [CurrentRecordNumber(
 QArticle),
 QArticle.RecordCount]);

Article Query
Having a nice browser to walk
through all articles, with corre-
sponding authors, is one thing. Be-
ing able to find what you’re looking
for is another! The last SpeedButton
on the form, the one with the Q
caption, is used to define and exe-
cute a search query. Figure 6 shows
our query dialog.

Since we’re already using a
TQuery to walk through the list of
Articles, we just need to re-define
the SQL query every time we re-
define our search criteria.

But before we can even try to
generate the SQL query, we must
initialise the comboboxes with the
choices that the user can make. For
Issue Numbers we can use a simple
TSpinEdit that starts at 0 and runs
up to 100. The Article Type is

➤ Figure 5

function CurrentRecordNumber(DataSet: TDataSet): LongInt;
 { Gives current record number as result for dBase/Paradox datasets only }
var CursorProps: CurProps;
 RecordProps: RECProps;
begin
 Result := 0;
 with DataSet do
 try
 if State = dsInactive then DBError(SDataSetClosed);
 Check(DbiGetCursorProps(Handle, Cursorprops));
 UpdateCursorPos;
 Check(DbiGetRecord(Handle, dbiNOLOCK, nil, @RecordProps));
 case CursorProps.iSeqNums of
 0: Result := RecordProps.iPhyRecNum; {dBase}
 1: Result := RecordProps.iSeqNum {Paradox}
 end
 except
 { skip errors - return 0 }
 end
end;

➤ Listing 4

equally simple: we can fill the com-
bobox with the five article types.

But what about the Author Name
and Keyword? Well, for those we
need to actually look inside the
AUTHOR and KEYWORD tables and pick
every author name and keyword. In
short, we just open the relevant
table, go to the first record, get the
field value we need, put it in the
combobox and go to the next re-
cord until we’re at the end of the
table. Pretty straightforward, eh?
See Listing 5.

Unfortunately, if we store only
the author name in the combobox

we will need to look for the author
ID later when performing the
query. Alternatively, we would
need to do a JOIN between the
ARTICLE and AUTHOR tables. How-
ever, JOINs take far more time than
normal queries, which means we
can win some efficiency if we find a
way not to use one! So, we would in
fact like to use something like a
TDBLookupCombo, one that shows us
the names of the authors, but
where the actual values are the IDs
of the authors. Unfortunately, the
TDBLookupCombo component itself
won’t work for us in this case, since

34 The Delphi Magazine Issue 11

it insists on sorting on the lookup
value instead of the display value
(we can’t set a secondary index on
the QAuthor either).

With a little trick we can get the
best of both worlds: both the
names of the authors (in alphabeti-
cal order) and the author ID values,

hidden from the end-user but pre-
sent in the combobox. The only
thing we need to do is to pad the
author names with enough spaces
to push the author ID out of the
visible range of the combobox. I
stretched all the names to 64 char-
acters, padding them with spaces
where needed, and appended the
author ID after the 64th character
– present but not visible. The
Sorted property of the combobox
will ensure that it’s sorted on
name, not ID. After the user has
selected a name we just remove the
first 64 characters and convert it to
an integer Author ID. Hey presto:
an artificial secondary index!

Now that we have filled each
combobox let’s focus on the inter-
action between the checkboxes
and the comboboxes. If an item is
selected in one of the comboboxes
then the checkbox is checked. If we
uncheck the checkbox, the item in
the combobox is de-selected. So
either both of them are selected
(checked) or not. As an example,
the code for the article type check-
box is shown in Listing 6. We need
a corresponding routine for when
the selection in the combobox
changes. See Listing 7.

SQL
Now, finally, we can rest back and
focus on generating the SQL query.
It consists of three parts: the SELECT
part, the WHERE part and the ORDER
BY part. We’ve already seen the
SELECT part, which was generated
by the Database Form Expert.

Now, what about the WHERE part?
If we check an Article Type, Issue
Number and so on, we need to add
a WHERE clause to the query. For an
Article Type, this is actually a
pretty simple addition; in pseudo
code it is:

WHERE ARTICLE."Article Type" =
 ArticleType.Items[
 ArticleType.ItemIndex];

We have to generate the SQL query
and fill in the value of the selected
item of the combobox. Which is the
main reason why the checkboxes
and comboboxes must be in sync
at all times: if we decide to add a
WHERE clause to the query, the

procedure TQueryDlg.FormCreate(Sender: TObject);
begin
 with TTable.Create(nil) do begin
 DatabaseName := DataPath;
 TableName := ’AUTHOR.DB’;
 ReadOnly := True;
 try
 Active := True;
 First;
 while not Eof do begin
 AuthorName.Items.Add(Format(’%-64s%d’,
 [FieldByName(’NAME’).AsString,
 FieldByName(’AUTHOR ID’).AsInteger]));
 Next
 end
 finally
 Active := False
 end { authors };
 TableName := ’KEYWORD.DB’;
 try
 Active := True;
 First;
 while not Eof do begin
 Keyword.Items.Add(FieldByName(’KEYWORD’).AsString);
 Next
 end
 finally
 Active := False;
 Free
 end { keywords }
 end
end;

➤ Listing 5

➤ Figure 6

procedure TQueryDlg.CheckArticleTypeClick(Sender: TObject);
begin
 if not CheckArticleType.Checked then
 ArticleType.ItemIndex := -1
 else
 if (ArticleType.ItemIndex = -1) then
 if (ArticleType.Items.Count > 0) then
 ArticleType.ItemIndex := 0
 else
 CheckArticleType.Checked := False
end;

➤ Listing 6

procedure TQueryDlg.ArticleTypeChange(Sender: TObject);
begin
 CheckArticleType.Checked := ArticleType.ItemIndex >= 0
end;

➤ Listing 7

July 1996 The Delphi Magazine 35

combobox must have a valid selec-
tion to build the query with. For
Issue Number, we have an equally
simple addition to the query:

WHERE ARTICLE."Issue #" =
 IssueNumber.Value

We’ll skip the Author Name for now
and look at the Keywords first.
Since the ARTICLE table doesn’t
know anything about Keywords, it
seems we have no choice but to use
a JOIN here; in pseudo-code:

WHERE (ARTICLE."Article ID" =
 KEYWORD."Article ID")
 AND (KEYWORD."Keyword" =
 Keyword.Items[
 Keyword.ItemIndex])

If we click on the SQL button in the
Query Dialog, the dialog is resized
to reveal a hidden memo field that
holds the text of the SQL query that
will be generated and executed. For
an Article Type, Issue Number and
Keyword, the generated SQL query
would be as in Figure 7. Note the
FROM ARTICLE, KEYWORD part, which
denotes the JOIN in the query.

OR-Bug?
Now, time to move on to the last
part: the Author Name. It doesn’t
sound that difficult: we can get the
Author Name from the combobox
and we’ve hidden the Author ID in
the text starting at position 65. So,
what’s the difficulty this time?
Well, the problem is that the
Author Name we’ve selected can
be the first, second or third author
of the article. So we actually need
an OR statement this time:

WHERE (ARTICLE."Author 1" =
 AuthorID)
 OR (ARTICLE."Author 2" =
 AuthorID)
 OR (ARTICLE."Author 3" =
 AuthorID)

At first sight, this seems to work
fine. However, as soon as we com-
bine this statement with the other
parts, like the Article Type, we get
into trouble. It seems that when we
combine an AND-part and an OR-part,
even if we use parentheses, the
query will not work correctly:

SELECT * FROM ARTICLE
WHERE (ARTICLE."Article type" =
 Article)
 AND ((ARTICLE."Author 1" = 2)
 OR (ARTICLE."Author 2" = 2)
 OR (ARTICLE."Author 3" = 2))

The combined query above will, in
practice, also deliver any reviews
written by two or more authors
where the ID of the second or third
author is 2. It seems the query
internally becomes:

SELECT * FROM ARTICLE
WHERE (ARTICLE."Article type" =
 Article) AND
 (ARTICLE."Author 1" = 2)
 OR (ARTICLE."Author 2" = 2)
 OR (ARTICLE."Author 3" = 2)

where each part separated by an OR
in the WHERE clause is considered a
valid alternative. Is this a bug? I
couldn’t find enough documenta-
tion, but I think it’s a bug (using
ODBC the query is executed
correctly). So, we amend the SQL:

SELECT * FROM ARTICLE
WHERE (ARTICLE."Article type" =
 Article) AND
 (ARTICLE."Author 1" = 2)
 OR (ARTICLE."Article type" =
 Article) AND
 (ARTICLE."Author 2" = 2)
 OR (ARTICLE."Article type" =
 Article) AND
 (ARTICLE."Author 3" = 2)

➤ Figure 7

We’ll move on now to the final part
of the SQL query: the ORDER BY
clause. As stated before, it would
be a good idea to have the resulting
articles of the query sorted by Is-
sue number and Page number. To
do that, we just need:

SELECT * FROM ARTICLE
ORDER BY ARTICLE."Issue #",
 ARTICLE."Page Number"

You can check the code which gen-
erates the final SQL query in the
routine TQueryDlg.BtnSqlClick in
the file QUERY.PAS on the disk.

Conclusion
Well, by now you must be tired and
only want to see the end result! On
this month’s disk, in directory
TDMAID, you will find two ZIP files:
one with the source code and a
second with the data files. An
enhanced executable version is on
our Web site. Happy hunting!

Bob Swart (aka Dr.Bob, find him at
http://www.pi.net/~drbob/) is the
Delphi Specialist for Bolesian in
The Netherlands and a freelance
technical author. Bob is co-author
of The Revolutionary Guide to
Delphi 2, published by WROX
Press. In his spare time Bob likes to
watch videos of Star Trek Voyager
and Deep Space Nine with his 2-
year old son Erik Mark Pascal.

36 The Delphi Magazine Issue 11

	Analysis
	Data Design
	Main Form Design
	Database Form Expert
	Calculated Field
	Author
	Author Tabs

